Just some basic updating and cleaning up.

- Added comments.
- Ran cargo fmt.
- Updated the versioning.
This commit is contained in:
Myrddin Dundragon 2025-04-22 02:18:12 -04:00
parent cd50b53be5
commit f5780f50c2
7 changed files with 330 additions and 237 deletions

2
Cargo.lock generated
View File

@ -4,4 +4,4 @@ version = 4
[[package]]
name = "rune"
version = "0.2.0"
version = "0.3.0"

View File

@ -1,6 +1,6 @@
[package]
name = "rune"
version = "0.2.0"
version = "0.3.0"
edition = "2021"
description = "A lexical analysis library."
repository = "/myrddin/rune"

View File

@ -31,5 +31,5 @@ Then add this to your Cargo.toml file.
```toml
[dependencies]
rune = { version = "0.2.0", registry = "cybermages" }
rune = { version = "0.3.0", registry = "cybermages" }
```

View File

@ -5,133 +5,159 @@ use rune::{Lexer, Span, TokenStream, TokenType};
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum MarkdownTokenType {
Heading(u8),
EmphasisStart,
EmphasisEnd,
StrongStart,
StrongEnd,
CodeSpan,
Text,
Symbol,
Whitespace,
Newline,
Unknown,
pub enum MarkdownTokenType
{
Heading(u8),
EmphasisStart,
EmphasisEnd,
StrongStart,
StrongEnd,
CodeSpan,
Text,
Symbol,
Whitespace,
Newline,
Unknown
}
impl std::fmt::Display for MarkdownTokenType {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
MarkdownTokenType::Heading(level) => write!(f, "Heading({})", level),
MarkdownTokenType::EmphasisStart => write!(f, "EmphasisStart"),
MarkdownTokenType::EmphasisEnd => write!(f, "EmphasisEnd"),
MarkdownTokenType::StrongStart => write!(f, "StrongStart"),
MarkdownTokenType::StrongEnd => write!(f, "StrongEnd"),
MarkdownTokenType::CodeSpan => write!(f, "CodeSpan"),
MarkdownTokenType::Text => write!(f, "Text"),
MarkdownTokenType::Symbol => write!(f, "Symbol"),
MarkdownTokenType::Whitespace => write!(f, "Whitespace"),
MarkdownTokenType::Newline => write!(f, "Newline"),
MarkdownTokenType::Unknown => write!(f, "Unknown"),
}
}
impl std::fmt::Display for MarkdownTokenType
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result
{
match self
{
MarkdownTokenType::Heading(level) => write!(f, "Heading({})", level),
MarkdownTokenType::EmphasisStart => write!(f, "EmphasisStart"),
MarkdownTokenType::EmphasisEnd => write!(f, "EmphasisEnd"),
MarkdownTokenType::StrongStart => write!(f, "StrongStart"),
MarkdownTokenType::StrongEnd => write!(f, "StrongEnd"),
MarkdownTokenType::CodeSpan => write!(f, "CodeSpan"),
MarkdownTokenType::Text => write!(f, "Text"),
MarkdownTokenType::Symbol => write!(f, "Symbol"),
MarkdownTokenType::Whitespace => write!(f, "Whitespace"),
MarkdownTokenType::Newline => write!(f, "Newline"),
MarkdownTokenType::Unknown => write!(f, "Unknown")
}
}
}
// Define how you want to interpret base tokens
pub fn transform(input: &TokenStream<TokenType>) -> TokenStream<MarkdownTokenType> {
let mut output = TokenStream::new();
pub fn transform(input: &TokenStream<TokenType>)
-> TokenStream<MarkdownTokenType>
{
let mut output = TokenStream::new();
let mut i = 0;
while i < input.len() {
let token = input.get(i).unwrap(); // safe due to bounds check above
let mut i = 0;
while i < input.len()
{
let token = input.get(i).unwrap(); // safe due to bounds check above
match token.variant {
TokenType::Symbol if token.lexeme == "#" => {
// Count consecutive #s for heading level
let mut level = 1;
let mut span = token.span.clone();
match token.variant
{
TokenType::Symbol if token.lexeme == "#" =>
{
// Count consecutive #s for heading level
let mut level = 1;
let mut span = token.span.clone();
while i + 1 < input.len() {
let next = input.get(i + 1).unwrap();
if *next.variant == TokenType::Symbol && next.lexeme == "#" {
level += 1;
span.end = next.span.end;
i += 1;
} else {
break;
}
}
output.push(token.lexeme.repeat(level),
MarkdownTokenType::Heading(level as u8),
span);
while i + 1 < input.len()
{
let next = input.get(i + 1).unwrap();
if *next.variant == TokenType::Symbol && next.lexeme == "#"
{
level += 1;
span.end = next.span.end;
i += 1;
}
else
{
break;
}
}
TokenType::Symbol if token.lexeme == "*" => {
// Look ahead to see if it's strong (**) or emphasis (*)
if i + 1 < input.len() {
let next = input.get(i + 1).unwrap();
if *next.variant == TokenType::Symbol && next.lexeme == "*" {
output.push("**".to_string(),
MarkdownTokenType::StrongStart,
Span::merge(*token.span, *next.span));
i += 1; // skip the second '*'
} else {
output.push("*".to_string(),
MarkdownTokenType::EmphasisStart,
token.span.clone());
}
} else {
output.push("*".to_string(),
MarkdownTokenType::EmphasisStart,
token.span.clone());
}
output.push(token.lexeme.repeat(level),
MarkdownTokenType::Heading(level as u8),
span);
}
TokenType::Symbol if token.lexeme == "*" =>
{
// Look ahead to see if it's strong (**) or emphasis (*)
if i + 1 < input.len()
{
let next = input.get(i + 1).unwrap();
if *next.variant == TokenType::Symbol && next.lexeme == "*"
{
output.push("**".to_string(),
MarkdownTokenType::StrongStart,
Span::merge(*token.span, *next.span));
i += 1; // skip the second '*'
}
else
{
output.push("*".to_string(),
MarkdownTokenType::EmphasisStart,
token.span.clone());
}
}
TokenType::Symbol if token.lexeme == "`" => {
output.push(token.lexeme.to_string(),
MarkdownTokenType::CodeSpan,
token.span.clone());
else
{
output.push("*".to_string(),
MarkdownTokenType::EmphasisStart,
token.span.clone());
}
}
TokenType::Text => {
output.push(token.lexeme.to_string(),
MarkdownTokenType::Text,
token.span.clone());
}
TokenType::Symbol if token.lexeme == "`" =>
{
output.push(token.lexeme.to_string(),
MarkdownTokenType::CodeSpan,
token.span.clone());
}
TokenType::Symbol => {
output.push(token.lexeme.to_string(),
MarkdownTokenType::Symbol,
token.span.clone());
}
TokenType::Text =>
{
output.push(token.lexeme.to_string(),
MarkdownTokenType::Text,
token.span.clone());
}
TokenType::Whitespace => {
output.push(token.lexeme.to_string(),
MarkdownTokenType::Whitespace,
token.span.clone());
}
TokenType::Symbol =>
{
output.push(token.lexeme.to_string(),
MarkdownTokenType::Symbol,
token.span.clone());
}
TokenType::Newline => {
output.push(token.lexeme.to_string(),
MarkdownTokenType::Newline,
token.span.clone());
}
TokenType::Whitespace =>
{
output.push(token.lexeme.to_string(),
MarkdownTokenType::Whitespace,
token.span.clone());
}
_ => {
output.push(token.lexeme.to_string(),
MarkdownTokenType::Unknown,
token.span.clone());
}
}
TokenType::Newline =>
{
output.push(token.lexeme.to_string(),
MarkdownTokenType::Newline,
token.span.clone());
}
i += 1;
}
_ =>
{
output.push(token.lexeme.to_string(),
MarkdownTokenType::Unknown,
token.span.clone());
}
}
output
i += 1;
}
output
}

View File

@ -1,4 +1,6 @@
use std::{error::Error, path::PathBuf};
use std::error::Error;
use std::path::PathBuf;
use super::position::Span;
@ -12,116 +14,114 @@ use super::position::Span;
/// It is designed to provide detailed diagnostics for file-based or
/// in-memory parsing and is compatible with error reporting ecosystems.
#[derive(Debug)]
pub struct LexerError {
/// A human-readable error message.
pub message: String,
pub struct LexerError
{
/// A human-readable error message.
pub message: String,
/// The span where the error occurred.
pub span: Span,
/// The span where the error occurred.
pub span: Span,
/// The file that the error occurred in, if known.
pub file: Option<PathBuf>,
/// The file that the error occurred in, if known.
pub file: Option<PathBuf>,
/// The source snippet related to the error, if known.
pub snippet: Option<String>,
/// The source snippet related to the error, if known.
pub snippet: Option<String>,
/// An optional underlying error that caused this one.
pub source: Option<Box<dyn Error>>,
/// An optional underlying error that caused this one.
pub source: Option<Box<dyn Error>>
}
impl LexerError {
/// Creates a new `LexerError` with a message, span, and optional context.
///
/// # Parameters
/// - `message`: A human-readable explanation of the error.
/// - `span`: The region in the source where the error occurred.
/// - `file`: An optional path to the file in which the error occurred.
/// - `snippet`: An optional problematic input string.
///
/// # Returns
/// A new instance of `LexerError`.
pub fn new<S, T>(
message: S,
span: Span,
file: Option<T>,
snippet: Option<S>,
) -> Self
where
S: Into<String>,
T: Into<PathBuf>,
{
LexerError {
message: message.into(),
span,
file: file.map(Into::into),
snippet: snippet.map(Into::into),
source: None,
}
}
impl LexerError
{
/// Creates a new `LexerError` with a message, span, and optional context.
///
/// # Parameters
/// - `message`: A human-readable explanation of the error.
/// - `span`: The region in the source where the error occurred.
/// - `file`: An optional path to the file in which the error occurred.
/// - `snippet`: An optional problematic input string.
///
/// # Returns
/// A new instance of `LexerError`.
pub fn new<S, T>(message: S, span: Span, file: Option<T>,
snippet: Option<S>)
-> Self
where S: Into<String>,
T: Into<PathBuf>
{
LexerError { message: message.into(),
span,
file: file.map(Into::into),
snippet: snippet.map(Into::into),
source: None }
}
/// Creates a `LexerError` from only a message and span.
///
/// This is useful when file or snippet context is not available.
pub fn from_message<S>(message: S, span: Span) -> Self
where
S: Into<String>,
{
Self::new(message, span, None::<PathBuf>, None::<S>)
}
/// Creates a `LexerError` from only a message and span.
///
/// This is useful when file or snippet context is not available.
pub fn from_message<S>(message: S, span: Span) -> Self
where S: Into<String>
{
Self::new(message, span, None::<PathBuf>, None::<S>)
}
/// Attaches a snippet of the offending source code.
///
/// This is helpful for diagnostics and tooling output.
pub fn with_snippet<S>(mut self, snippet: S) -> Self
where
S: Into<String>,
{
self.snippet = Some(snippet.into());
self
}
/// Attaches a snippet of the offending source code.
///
/// This is helpful for diagnostics and tooling output.
pub fn with_snippet<S>(mut self, snippet: S) -> Self
where S: Into<String>
{
self.snippet = Some(snippet.into());
self
}
/// Attaches the path of the file in which the error occurred.
pub fn with_file<T>(mut self, file: T) -> Self
where
T: Into<PathBuf>,
{
self.file = Some(file.into());
self
}
/// Attaches the path of the file in which the error occurred.
pub fn with_file<T>(mut self, file: T) -> Self
where T: Into<PathBuf>
{
self.file = Some(file.into());
self
}
/// Wraps a source error that caused this `LexerError`.
///
/// This allows you to chain errors for more detailed diagnostics.
pub fn with_source<E>(mut self, err: E) -> Self
where
E: Error + 'static,
{
self.source = Some(Box::new(err));
self
}
/// Wraps a source error that caused this `LexerError`.
///
/// This allows you to chain errors for more detailed diagnostics.
pub fn with_source<E>(mut self, err: E) -> Self
where E: Error + 'static
{
self.source = Some(Box::new(err));
self
}
}
impl std::fmt::Display for LexerError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "Lexer error at {}", self.span)?;
impl std::fmt::Display for LexerError
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result
{
write!(f, "Lexer error at {}", self.span)?;
if let Some(file) = &self.file {
write!(f, " in file `{}`", file.display())?;
}
if let Some(file) = &self.file
{
write!(f, " in file `{}`", file.display())?;
}
write!(f, ": {}", self.message)?;
write!(f, ": {}", self.message)?;
if let Some(snippet) = &self.snippet {
write!(f, "\n --> Snippet: `{}`", snippet)?;
}
if let Some(snippet) = &self.snippet
{
write!(f, "\n --> Snippet: `{}`", snippet)?;
}
Ok(())
}
Ok(())
}
}
impl Error for LexerError {
/// Returns the underlying cause of this error, if any.
fn source(&self) -> Option<&(dyn Error + 'static)> {
self.source.as_ref().map(|e| e.as_ref())
}
impl Error for LexerError
{
/// Returns the underlying cause of this error, if any.
fn source(&self) -> Option<&(dyn Error + 'static)>
{
self.source.as_ref().map(|e| e.as_ref())
}
}

View File

@ -7,24 +7,25 @@ use super::token::{TokenStream, TokenType};
/// The size of data chunks to read from a file. This was arbitrarily chosen to
/// be 1mb.
/// The size of data chunks to read from a file. This is an arbitrary choice,
/// set to 1MB.
const BUFFER_SIZE: usize = 1024 * 1024;
/// The `Lexer` is the core component responsible for performing
/// lexicographical analysis on a text file.
/// The `Lexer` struct is responsible for performing lexical analysis
/// (tokenization) on text.
///
/// It reads input from a file character-by-character, generating a stream
/// of base tokens such as text, numbers, whitespace, symbols, and newlines.
/// These tokens are accumulated into a `TokenStream`, which is a flat,
/// cache-friendly data structure.
/// It processes input from a file or string character-by-character and
/// generates a stream of tokens, such as text, numbers, whitespace, symbols,
/// and newlines. These tokens are accumulated into a `TokenStream`, which is a
/// flat, cache-friendly data structure designed for efficient iteration.
///
/// After tokenization, the lexer applies a user-provided `transform` function
/// to each token in the stream, allowing consumers of the library to convert
/// base tokens into richer, domain-specific token types (e.g. Markdown
/// elements, syntax trees, or custom DSL tokens).
/// After the base tokens are generated, the `Lexer` allows for transformation
/// of these tokens into richer, domain-specific types via a user-provided
/// `transform` function. This transformation can be used to convert base tokens
/// into specific elements of a Markdown syntax tree, custom DSL tokens, or any
/// other custom format you need.
///
/// # Example
///
@ -38,32 +39,51 @@ const BUFFER_SIZE: usize = 1024 * 1024;
///
/// let tokens = Lexer::scan_text("Runes += 42", transform).unwrap();
///
/// // The tuple here is from the transform functions return type.
/// for token in &tokens
/// {
/// println!("{}", token);
/// }
/// ```
///
/// # Design Notes
///
/// - Uses a flat `TokenStream` to improve iteration performance and reduce heap
/// # Design Considerations
/// - Utilizes a flat `TokenStream` to improve performance and reduce heap
/// overhead.
/// - Consolidates contiguous characters into compound tokens (e.g. multi-digit
/// - Consolidates contiguous characters into compound tokens (e.g., multi-digit
/// numbers).
/// - Easily extensible via the `transform` function to support higher-level
/// parsing tasks.
/// - Extensible via the `transform` function, enabling the creation of
/// higher-level constructs, like Markdown elements or syntax trees for a
/// custom DSL.
///
/// # Errors
///
/// Returns a `LexerError` if the file cannot be opened or read.
/// # Error Handling
/// The lexer will return a `LexerError` if the input file cannot be opened or
/// read. Errors include issues such as missing files, read failures, or invalid
/// input formats.
pub enum Lexer {}
impl Lexer
{
/// Scans a file and produces a vector of transformed tokens.
/// Scans a file and generates a vector of transformed tokens based on the
/// provided `transform` function.
///
/// This method opens a file from the given `path`, reads the file line by
/// line, and converts the input into a stream of tokens. The tokens are
/// then passed to the `transform` function, which allows users to map
/// base tokens into domain-specific types.
///
/// # Parameters
/// - `path`: A path to the file to be lexically analyzed.
/// - `transform`: A function that takes a `TokenStream<TokenType>` and
/// transforms it into a `TokenStream<T>` where `T` is a domain-specific
/// type.
///
/// # Returns
/// A `Result<TokenStream<T>, LexerError>` where `T` is the transformed token
/// type, or an error.
///
/// # Errors
/// Returns a `LexerError` if the file cannot be opened or read.
pub fn scan_file<P, F, T>(path: P, transform: F)
-> Result<TokenStream<T>, LexerError>
where P: AsRef<std::path::Path>,
@ -82,6 +102,7 @@ impl Lexer
let reader = BufReader::with_capacity(BUFFER_SIZE, input_file);
// Read the file line by line.
for line in reader.lines()
{
match line
@ -93,7 +114,7 @@ impl Lexer
Err(_) =>
{
return Err(LexerError::new("Unable to read line during \
Lexigraphical Analysis.",
Lexical Analysis.",
Span::default(),
Some(path.as_ref()
.to_string_lossy()
@ -102,10 +123,10 @@ impl Lexer
}
}
// Add the newline token after each line.
stream.push("\n".to_string(),
TokenType::Newline,
Span::with_single(cursor));
cursor.line += 1;
cursor.column = 0;
}
@ -113,7 +134,22 @@ impl Lexer
Ok(transform(&stream))
}
/// Scans a full in-memory string and returns transformed tokens.
/// Scans a full in-memory string and produces transformed tokens.
///
/// This method tokenizes the input string `text` and returns the transformed
/// tokens using the provided `transform` function. It's a convenient way
/// to perform lexical analysis on in-memory strings without needing to
/// read from a file.
///
/// # Parameters
/// - `text`: A string slice representing the in-memory input text to
/// analyze.
/// - `transform`: A function that transforms the base tokens into
/// domain-specific types.
///
/// # Returns
/// A `Result<TokenStream<T>, LexerError>` where `T` is the transformed token
/// type, or an error.
pub fn scan_text<F, T>(text: &str, transform: F)
-> Result<TokenStream<T>, LexerError>
where F: FnOnce(&TokenStream<TokenType>) -> TokenStream<T>
@ -121,14 +157,15 @@ impl Lexer
let mut cursor = Position::default();
let mut stream = TokenStream::new();
// Process each line in the input string.
for line in text.lines()
{
Self::scan(line, &mut stream, &mut cursor);
// Add the newline token after each line.
stream.push("\n".to_string(),
TokenType::Newline,
Span::with_single(cursor));
cursor.line += 1;
cursor.column = 0;
}
@ -136,15 +173,28 @@ impl Lexer
Ok(transform(&stream))
}
/// Internal: scans a single line of text into tokens.
/// Internal method that scans a single line of text into tokens.
///
/// This method processes each character of a line and generates the
/// corresponding token. It handles cases like numeric tokens, text
/// tokens, symbols, and whitespace.
///
/// # Parameters
/// - `line`: A line of text to be lexically analyzed.
/// - `stream`: A mutable reference to the token stream where the generated
/// tokens will be pushed.
/// - `cursor`: A mutable reference to the cursor position, which tracks the
/// current position in the input.
fn scan(line: &str, stream: &mut TokenStream<TokenType>,
cursor: &mut Position)
{
for c in line.chars()
{
// Get the token type based on the character.
let variant = get_token_type(c);
let last = stream.len().saturating_sub(1);
// Handle token merging for contiguous tokens like numbers or text.
if !stream.is_empty() &&
variant == stream.variants[last] &&
(variant == TokenType::Numeric || variant == TokenType::Text)
@ -154,6 +204,7 @@ impl Lexer
}
else
{
// Add a new token to the stream.
stream.push(c.to_string(), variant, Span::with_single(*cursor));
}
@ -164,6 +215,18 @@ impl Lexer
/// Determines the type of a token based on the current character.
///
/// This helper function is responsible for identifying whether the current
/// character is part of a known token type such as numeric, text, whitespace,
/// or symbol.
///
/// # Parameters
/// - `curr_char`: The current character to analyze.
///
/// # Returns
/// A `TokenType` corresponding to the character type (e.g., `Numeric`, `Text`,
/// `Whitespace`, etc.).
fn get_token_type(curr_char: char) -> TokenType
{
match curr_char

View File

@ -59,7 +59,9 @@ fn test_basic_lexing()
Lexer::scan_text("magic runes", dummy_transform).expect("Lexer should \
succeed");
let tokens = tokens.into_iter().map(|t| { (*t.variant, String::from(t.lexeme))}).collect::<Vec<_>>();
let tokens = tokens.into_iter()
.map(|t| (*t.variant, String::from(t.lexeme)))
.collect::<Vec<_>>();
let expected = vec![(TokenType::Text, "magic".to_string()),
(TokenType::Whitespace, " ".to_string()),
@ -77,7 +79,9 @@ fn test_symbols_and_numbers()
Lexer::scan_text("13 + 37", dummy_transform).expect("Lexer should \
succeed");
let tokens = tokens.into_iter().map(|t| { (*t.variant, String::from(t.lexeme))}).collect::<Vec<_>>();
let tokens = tokens.into_iter()
.map(|t| (*t.variant, String::from(t.lexeme)))
.collect::<Vec<_>>();
let expected = vec![(TokenType::Numeric, "13".into()),
(TokenType::Whitespace, " ".into()),
@ -129,16 +133,16 @@ fn test_lexer_with_cases()
on case '{}'",
case.name));
let result = result.into_iter().map(|t| { (*t.variant, String::from(t.lexeme))}).collect::<Vec<_>>();
let result = result.into_iter()
.map(|t| (*t.variant, String::from(t.lexeme)))
.collect::<Vec<_>>();
let expected = case.expected
.iter()
.map(|(ty, s)| (*ty, s.to_string()))
.collect::<Vec<_>>();
assert_eq!(result, expected,
"Mismatch in test case '{}'",
case.name);
assert_eq!(result, expected, "Mismatch in test case '{}'", case.name);
cleanup_temp_file(&path);
}